Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 29: 196-213, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37621770

RESUMO

Few studies have investigated the properties and protein composition of small extracellular vesicles (sEVs) derived from neurons under hypoxic conditions. Presently, the extent of the involvement of these plentiful sEVs in the onset and progression of ischemic stroke remains an unresolved question. Our study systematically identified the characteristics of sEVs derived from neurons under hypoxic conditions (HypEVs) by physical characterization, sEV absorption, proteomics and transcriptomics analysis. The effects of HypEVs on neurites, cell survival, and neuron structure were assessed in vitro and in vivo by neural complexity tests, magnetic resonance imaging (MRI), Golgi staining, and Western blotting of synaptic plasticity-related proteins and apoptotic proteins. Knockdown of Fused in Sarcoma (FUS) small interfering RNA (siRNA) was used to validate FUS-mediated HypEV neuroprotection and mitochondrial mRNA release. Hypoxia promoted the secretion of sEVs, and HypEVs were more easily taken up and utilized by recipient cells. The MRI results illustrated that the cerebral infarction volume was reduced by 45% with the application of HypEVs, in comparison to the non- HypEV treatment group. Mechanistically, the FUS protein is necessary for the uptake and neuroprotection of HypEVs against ischemic stroke as well as carrying a large amount of mitochondrial mRNA in HypEVs. However, FUS knockdown attenuated the neuroprotective rescue capabilities of HypEVs. Our comprehensive dataset clearly illustrates that FUS-mediated HypEVs deliver exceptional neuroprotective effects against ischemic stroke, primarily through the maintenance of neurite integrity and the reduction of mitochondria-associated apoptosis.

2.
Stroke Vasc Neurol ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328278

RESUMO

BACKGROUND: Nanoparticles (NPs) are a class of substances that can be loaded with therapeutic agents delivered to specific areas. In our earlier research, we identified a neuron-derived circular RNA (circRNA), circular oxoglutarate dehydrogenase (CircOGDH), as a promising therapeutic target for acute ischaemic stroke. This study dedicated to explore a prospective preliminary strategy of CircOGDH-based NP delivered to the ischaemic penumbra region in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. METHODS: Immunofluorescence in primary cortex neurons and in vivo fluorescence imaging revealed endocytosis of Poly(lactide-co-glycolide) (PLGA) poly amidoamine(PAMAM)@CircOGDH small interfering RNA (siRNA) NPs. Western blotting analysis and CCK8 assay were performed to evaluate the apoptotic level in ischaemic neurons treated with PLGA-PAMAM@CircOGDH siRNA NPs. Quantitative reverse transcription PCR experiments, mice behaviour test, T2 MRI analysis, Nissl and TdT-mediated dUTP nick end labeling (TUNEL) co-staining were performed to evaluate the apoptosis level of ischaemic penumbra neurons in MCAO/R mice. Biosafety evaluation of NPs in MCAO/R mice was detected by blood routine examination, liver and kidney function examination and HE staining. RESULTS: PLGA-PAMAM@CircOGDH siRNA NPs were successfully assembled. Endocytosis of PLGA-PAMAM@CircOGDH siRNA NPs in ischaemic neurons alleviated neuronal apoptotic level in vitro and in vivo. Furthermore, mice behaviour test showed that the neurological defects of MCAO/R mice were significantly alleviated after the tail injection of PLGA-PAMAM@CircOGDH siRNA NPs, and no toxic effects were observed. CONCLUSION: In conclusion, our results suggest that PLGA-PAMAM@CircOGDH siRNA NPs can be delivered to the ischaemic penumbra region and alleviate neuron apoptosis in MCAO/R mice and in ischaemic neurons; therefore, our study provides a desirable approach for using circRNA-based NPs for the treatment of ischaemic stroke.

3.
Cell Mol Neurobiol ; 43(2): 859-878, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35449428

RESUMO

The prognosis of ischemic stroke patients is highly associated with the collateral circulation. And the competing endogenous RNAs (ceRNAs) generated from different compensatory supply regions may also involve in the regulation of ischemic tissues prognosis. In this study, we found the apoptosis progress of ischemic neurons in posterior circulation-supplied regions (close to PCA, cortex2) was much slower than that in anterior circulation-supplied territory (close to ACA, cortex1) in MCAO-3-h mice. Using the RNA sequencing and functional enrichment analysis, we analyzed the difference between RNA expression profile in cortex1 and cortex2 and the related biological processes. The results indicated that the differential expressed ceRNAs in cortex1 were involved in cell process under acute injury, while the differential expressed ceRNAs in cortex2 was more likely to participate in long-term injury and repair process. Besides, by establishing the miRNA-ceRNA interaction network we further sorted out two specifically distributed miRNAs, namely mmu-miR446i-3p (in cortex1) and mmu-miR3473d (in cortex2). And the specifically increased mmu-miR3473d in cortex2 mainly involved the angiogenesis and cell proliferation after ischemic stroke, which may be the critical reason for the longer therapeutic time window in cortex2. In conclusion, the present study reported the specific changes of ceRNAs in distinct compensatory regions potentially involved in the evolution of cerebral ischemic tissues and the unbalance prognosis after stroke. It provided more evidence for the collateral compensatory effects on patients' prognosis and carried out the new targets for the ischemic stroke therapy.


Assuntos
AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Acidente Vascular Cerebral , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Acidente Vascular Cerebral/genética , AVC Isquêmico/genética , RNA Longo não Codificante/genética , Redes Reguladoras de Genes
4.
Front Neurol ; 13: 774654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359655

RESUMO

Background: We aimed to develop and validate a new nomogram for predicting the risk of intracranial hemorrhage (ICH) in patients with acute ischemic stroke (AIS) after intravenous thrombolysis (IVT). Methods: A retrospective study enrolled 553 patients with AIS treated with IVT. The patients were randomly divided into two cohorts: the training set (70%, n = 387) and the testing set (30%, n = 166). The factors in the predictive nomogram were filtered using multivariable logistic regression analysis. The performance of the nomogram was assessed based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA). Results: After multivariable logistic regression analysis, certain factors, such as smoking, National Institutes of Health of Stroke Scale (NIHSS) score, blood urea nitrogen-to-creatinine ratio (BUN/Cr), and neutrophil-to-lymphocyte ratio (NLR), were found to be independent predictors of ICH and were used to construct a nomogram. The AUC-ROC values of the nomogram were 0.887 (95% CI: 0.842-0.933) and 0.776 (95% CI: 0.681-0.872) in the training and testing sets, respectively. The AUC-ROC of the nomogram was higher than that of the Multicenter Stroke Survey (MSS), Glucose, Race, Age, Sex, Systolic blood Pressure, and Severity of stroke (GRASPS), and stroke prognostication using age and NIH Stroke Scale-100 positive index (SPAN-100) scores for predicting ICH in both the training and testing sets (p < 0.05). The calibration plot demonstrated good agreement in both the training and testing sets. DCA indicated that the nomogram was clinically useful. Conclusions: The new nomogram, which included smoking, NIHSS, BUN/Cr, and NLR as variables, had the potential for predicting the risk of ICH in patients with AIS after IVT.

5.
Circ Res ; 130(6): 907-924, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35189704

RESUMO

BACKGROUND: Acute ischemic stroke (AIS) is a leading cause of disability and mortality worldwide. Prediction of penumbra existence after AIS is crucial for making decision on reperfusion therapy. Yet a fast, inexpensive, simple, and noninvasive predictive biomarker for the poststroke penumbra with clinical translational potential is still lacking. We aim to investigate whether the CircOGDH (circular RNA derived from oxoglutarate dehydrogenase) is a potential biomarker for penumbra in patients with AIS and its role in ischemic neuronal damage. METHODS: CircOGDH was screened from penumbra of middle cerebral artery occlusion mice and was assessed in plasma of patients with AIS by quantitative polymerase chain reaction. Magnetic resonance imaging was used to examine the penumbra volumes. CircOGDH interacted with miR-5112 (microRNA-5112) in primary cortical neurons was detected by fluorescence in situ hybridization, RNA immunoprecipitation, and luciferase reporter assay. Adenovirus-mediated CircOGDH knockdown ameliorated neuronal apoptosis induced by COL4A4 (Gallus collagen, type IV, alpha IV) overexpression. Transmission electron microscope, nanoparticle tracking analysis, and Western blot were performed to confirm exosomes. RESULTS: CircOGDH expression was dramatically and selectively upregulated in the penumbra tissue of middle cerebral artery occlusion mice and in the plasma of 45 patients with AIS showing a 54-fold enhancement versus noncerebrovascular disease controls. Partial regression analysis revealed that CircOGDH expression was positively correlated with the size of penumbra in patients with AIS. Sequestering of miR-5112 by CircOGDH enhanced COL4A4 expression to elevate neuron damage. Additionally, knockdown of CircOGDH significantly enhanced neuronal cell viability under ischemic conditions. Furthermore, the expression of CircOGDH in brain tissue was closely related to that in the serum of middle cerebral artery occlusion mice. Finally, we found that CircOGDH was highly expressed in plasma exosomes of patients with AIS compared with those in noncerebrovascular disease individuals. CONCLUSIONS: These results demonstrate that CircOGDH is a potential therapeutic target for regulating ischemia neuronal viability, and is enriched in neuron-derived exosomes in the peripheral blood, exhibiting a predictive biomarker of penumbra in patients with AIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , RNA Circular/genética , Acidente Vascular Cerebral , Animais , Biomarcadores , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Humanos , Hibridização in Situ Fluorescente , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/terapia , Camundongos , MicroRNAs/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia
6.
ACS Nano ; 16(1): 431-452, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34958560

RESUMO

Designing translational antioxidative agents that could scavenge free radicals produced during reperfusion in brain ischemia stroke and alleviate neurologic damage is the main objective for ischemic stroke treatment. Herein, we explored and simply synthesized a biomimic and translational Mn3O4 nanoenzyme (HSA-Mn3O4) to constrain ischemic stroke reperfusion-induced nervous system injury. This nanosystem exhibits reduced levels of inflammation and prolonged circulation time and potent ROS scavenging activities. As expected, HSA-Mn3O4 effectively inhibits oxygen and glucose deprivation-mediated cell apoptosis and endoplasmic reticulum stress and demonstrates neuroprotective capacity against ischemic stroke and reperfusion injury of brain tissue. Furthermore, HSA-Mn3O4 effectively releases Mn ions and promotes the increase of superoxide dismutase 2 activity. Therefore, HSA-Mn3O4 inhibits brain tissue damage by restraining cell apoptosis and endoplasmic reticulum stress in vivo. Taken together, this study not only sheds light on design of biomimic and translational nanomedicine but also reveals the neuroprotective action mechanisms against ischemic stroke and reperfusion injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Estresse do Retículo Endoplasmático , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Neurônios , Acidente Vascular Cerebral/tratamento farmacológico , Apoptose , Antioxidantes/farmacologia
7.
Mol Ther ; 30(3): 1275-1287, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763084

RESUMO

Blood-brain barrier (BBB) damage can be a result of central nervous system (CNS) diseases and may be a cause of CNS deterioration. However, there are still many unknowns regarding effective and targeted therapies for maintaining BBB integrity during ischemia/reperfusion (I/R) injury. In this study, we demonstrate that the circular RNA of FoxO3 (circ-FoxO3) promotes autophagy via mTORC1 inhibition to attenuate BBB collapse under I/R. Upregulation of circ-FoxO3 and autophagic flux were detected in brain microvessel endothelial cells in patients with hemorrhagic transformation and in mice models with middle cerebral artery occlusion/reperfusion. In vivo and in vitro studies indicated that circ-FoxO3 alleviated BBB damage principally by autophagy activation. Mechanistically, we found that circ-FoxO3 inhibited mTORC1 activity mainly by sequestering mTOR and E2F1, thus promoting autophagy to clear cytotoxic aggregates for improving BBB integrity. These results demonstrate that circ-FoxO3 plays a novel role in protecting against BBB damage, and that circ-FoxO3 may be a promising therapeutic target for neurological disorders associated with BBB damage.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Autofagia/genética , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Humanos , Infarto da Artéria Cerebral Média/complicações , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , RNA Circular/genética , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética
8.
J Neurochem ; 155(6): 697-713, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32578216

RESUMO

Moderate dietary restriction can ameliorate age-related chronic diseases such as Alzheimer's disease (AD) by increasing the expression of neurotrophic factors and promoting neurogenesis in the brain. Glycogen synthase kinase-3ß (GSK-3ß) signaling is essential for the coordination of progenitor cell proliferation and differentiation during brain development. The mechanisms by which GSK-3ß is involved in dietary restriction-induced neurogenesis and cognitive improvement remain unclear. Six-month-old male 3xTg-AD and wild-type mice were fed on alternate days (intermittent fasting, IF) or ad libitum (AL) for 3 months. GSK-3ß activity was regulated by bilaterally infusing lentiviral vectors carrying siRNA targeting GSK-3ß into the dentate gyrus region of the hippocampus. Intermittent fasting promoted neuronal differentiation and maturation in the dentate gyrus and ameliorated recognized dysfunction in 3xTg-AD mice. These effects were reversed by siRNA targeting GSK-3ß. After intermittent fasting, the insulin and protein kinase A signaling pathways were inhibited, while the adenosine monophosphate-activated protein kinase and brain-derived neurotrophic factor pathways were activated. These findings suggest that intermittent fasting can promote neuronal differentiation and maturation in the hippocampus by activating GSK-3ß, thus improving learning and memory.


Assuntos
Doença de Alzheimer/metabolismo , Diferenciação Celular/fisiologia , Jejum/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Glicogênio Sintase Quinase 3 beta/genética , Hipocampo/citologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos
9.
Front Neurosci ; 14: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116524

RESUMO

Many hospitals lack facilities for accurate diagnosis of acute ischemic stroke (AIS). Circular RNA (circRNA) is highly expressed in the brain and is closely associated with stroke. In this study, we examined whether the blood-borne circRNAs could be promising candidates as adjunctive diagnostic biomarkers and their pathophysiological roles after stroke. We profiled the blood circRNA expression in mice subjected to experimental focal cerebral ischemia and validated the selected circRNAs in AIS patients. We demonstrated that 128, 198, and 789 circRNAs were significantly altered at 5 min, 3 h, and 24 h after ischemic stroke, respectively. Our bioinformatics analysis revealed that the circRNA-targeted genes were associated with the Hippo signaling pathway, extracellular matrix-receptor interaction, and fatty acid metabolism at 5 min, 3 h and 24 h after ischemic stroke, respectively. We verified that many of these circRNAs existed in the mouse brain. Furthermore, we found that most of the predicted circRNA-miRNA interactions apparently exhibited functional roles in terms of regulation of their target gene expression in the brain. We also verified that many of these mouse circRNAs were conserved in human. Finally, we found that circBBS2 and circPHKA2 were differentially expressed in the blood of AIS patients. These results demonstrate that blood circRNAs may serve as potential biomarkers for AIS diagnosis and reveal the pathophysiological responses in the brain after ischemic stroke.

10.
J Cell Physiol ; 235(10): 7392-7409, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32096219

RESUMO

Retinal neovascularization (RNV) is a common pathological feature in many kinds of fundus oculi diseases. Sometimes RNV can even lead to severe vision loss. Oxidative injury is one of the main predisposing factors for RNV occurrence and development. The specific mechanism may be closely related to the special structural tissues of the retina. Retinal astrocytes (RACs) are mesenchymal cells located in the retinal neuroepithelial layer. RACs have an intimate anatomical relationship with microvascular endothelial cells. They have a variety of functions, but little is known about the mechanisms by which RACs regulate the function of endothelial cells. The molecules secreted by RACs, such as exosomes, have recently received a lot of attention and may provide potential clues to address the RAC-mediated modulation of endothelial cells. In this study, we aimed to preliminarily explore the mechanisms of how RAC exosomes generated under oxidative stress are involved in the regulation of endothelial function. Our results showed that the apoptosis and autophagy levels in RACs were positively correlated with the oxidative stress level, and the exosomes generated from RACs under normal and oxidative stress conditions had different effects on the proliferation and migration of endothelial cells. However, the effect of RACs on endothelial cell function could be markedly reversed by the autophagy inhibitor 3-methyladenine or the exosome inhibitor GW4869. Therefore, oxidative stress can lead to increased autophagy in RACs and can further promote RACs to regulate endothelial cell function by releasing exosomes.


Assuntos
Apoptose/fisiologia , Astrócitos/patologia , Autofagia/fisiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Estresse Oxidativo/fisiologia , Retina/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/patologia , Exossomos/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Neovascularização Retiniana/patologia
11.
Front Cell Dev Biol ; 8: 616590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614626

RESUMO

Exosomes contribute to cell-cell communications. Emerging evidence has shown that microglial exosomes may play crucial role in regulation of neuronal functions under ischemic conditions. However, the underlying mechanisms of microglia-derived exosome biosynthesis are largely unknown. Herein, we reported that the microglial PDE1-B expression was progressively elevated in the peri-infarct region after focal middle cerebral artery occlusion. By an oxygen-glucose-deprivation (OGD) ischemic model in cells, we found that inhibition of PDE1-B by vinpocetine in the microglial cells promoted M2 and inhibited M1 phenotype. In addition, knockdown or inhibition of PDE1-B significantly enhanced the autophagic flux in BV2 cells, and vinpocetine-mediated suppression of M1 phenotype was dependent on autophagy in ischemic conditions. Co-culture of BV2 cells and neurons revealed that vinpocetine-treated BV2 cells alleviated OGD-induced neuronal damage, and treatment of BV2 cells with 3-MA abolished the observed effects of vinpocetine. We further demonstrated that ischemia and vinpocetine treatment significantly altered microglial exosome biogenesis and release, which could be taken up by recipient neurons and regulated neuronal damage. Finally, we showed that the isolated exosome per se from conditioned BV2 cells is sufficient to regulate cortical neuronal survival in vivo. Taken together, these results revealed a novel microglia-neuron interaction mediated by microglia-derived exosomes under ischemic conditions. Our findings further suggest that PDE1-B regulates autophagic flux and exosome biogenesis in microglia which plays a crucial role in neuronal survival under cerebral ischemic conditions.

12.
J Neurosci Res ; 98(1): 87-97, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575990

RESUMO

The widespread expression of circular RNAs (circRNAs) is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies have shown that circRNAs can act as a miRNA sponge to repress miRNA function, participate in splicing of target genes, translate genes into protein and interact with RNA binding proteins (RBPs). RBPs are a broad class of proteins involved in gene transcription and translation, and interaction with RBPs is considered an important part of circRNA function, which can serve as an essential element underlying the functions of circRNAs, including genesis, translation, transcriptional regulation of target genes, and extracellular transport. In this mini-review, we attempt to explore in detail the relationship between circRNAs and RBPs, and the interactions between the two factors. The goal of this review is to investigate the emerging studies of RBPs and circRNAs to better understand how their interaction alters cellular function.


Assuntos
Exossomos/metabolismo , Regulação da Expressão Gênica , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos
13.
Neural Plast ; 2019: 7675496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911291

RESUMO

Ischemic stroke is usually followed by inflammatory responses mediated by microglia. However, the effect of statins on directly preventing posthypoxia microglia inflammatory factors to prevent injury to surrounding healthy neurons is unclear. Atorvastatin and rosuvastatin, which have different physical properties regarding their lipid and water solubility, are the most common HMG-CoA reductase inhibitors (statins) and might directly block posthypoxia microglia inflammatory factors to prevent injury to surrounding neurons. Neuronal damage and microglial activation of the peri-infarct areas were investigated by Western blotting and immunofluorescence after 24 hours in a middle cerebral artery occlusion (MCAO) rat model. The decrease in neurons was in accordance with the increase in microglia, which could be reversed by both atorvastatin and rosuvastatin. The effects of statins on blocking secretions from posthypoxia microglia and reducing the secondary damage to surrounding normal neurons were studied in a coculture system in vitro. BV2 microglia were cultured under oxygen glucose deprivation (OGD) for 3 hours and then cocultured following reperfusion for 24 hours in the upper wells of transwell plates with primary neurons being cultured in the bottom wells. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and cyclooxygenase-2 (COX2), which are activated by the nuclear factor-kappa B (NF-κB) signaling pathway in OGD-induced BV2 microglia, promoted decreased release of the anti-inflammatory cytokine IL-10 and apoptosis of neurons in the coculture systems according to ELISA and Western blotting. However, pretreatment with atorvastatin or rosuvastatin significantly reduced neuronal death, synaptic injury, and amyloid-beta (Aß) accumulation, which might lead to increased low-density lipoprotein receptors (LDLRs) in BV2 microglia. We concluded that the proinflammatory mediators released from postischemia damage could cause damage to surrounding normal neurons, while HMG-CoA reductase inhibitors prevented neuronal apoptosis and synaptic injury by inactivating microglia through blocking the NF-κB signaling pathway.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Citocinas/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
14.
Front Cell Neurosci ; 12: 225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116175

RESUMO

Hemorrhagic transformation (HT) is a serious complication that stimulates inflammation during reperfusion therapy after acute ischemic stroke. Rosuvastatin, a 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, might improve the outcome of HT by inhibiting neuroinflammation. This study aimed to explore the protective effects of rosuvastatin against HT after recombinant tissue plasminogen activator (rt-PA) treatment in mice with experimental stroke via the attenuation of inflammation. A total of one hundred sixty-nine male BALB/c mice were used in the experiment. HT was successfully established in 70 mice that were subjected to 3 h of middle cerebral artery occlusion (MCAO) followed by a 10 mg/kg rt-PA injection over 10 min and reperfusion for 24 h. The mice were then administered rosuvastatin (1 mg/kg, 5 mg/kg) or saline (vehicle). The brain water content and neurological deficits (wire hang and adhesive removal somatosensory tests) were assessed at 24 h after rt-PA reperfusion following MCAO surgery. The morphology, blood-brain barrier (BBB) permeability and number of astrocytes and microglia were assessed by immunohistochemistry, electron microscopy and western blotting at 24 h after rt-PA reperfusion following MCAO surgery. Rosuvastatin protected against impaired neurological function and reversed the BBB leakage observed in the HT group. The increased activation of astrocytes and microglia and secretion of inflammatory factors caused by HT damage were significantly attenuated by high-dose rosuvastatin treatment vs. normal-dose rosuvastatin treatment. Related inflammatory pathways, such as the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, were downregulated in the rosuvastatin-treated groups compared with the HT group. In conclusion, our results indicate that rosuvastatin is a promising therapeutic agent for HT after rt-PA reperfusion following MCAO surgery in mice, as it attenuates neuroinflammation. Additionally, high-dose rosuvastatin treatment could have a greater anti-inflammatory effect on HT than normal-dose rosuvastatin treatment.

15.
Front Neurosci ; 12: 405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29970982

RESUMO

Exploring and expanding the indications of common clinical drugs, such as statins, is important to improve the prognosis of patients with permanent cerebral infarction. It has been suggested that reversing the defects in cellular autophagy and ER stress with statin therapy may be a potential treatment option for reducing ischemic damage. Male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (PMCAO) by electrocoagulation surgery. Atorvastatin (ATV, 10 mg/kg/day) or vehicle was administered intraperitoneally. Rats were divided into the vehicle-treated (SHAM), ATV pretreatment for MCAO (AMCAO), and 3-methyladenine (3MA) combined with ATV pretreatment (3MAMCAO) groups. Magnetic resonance imaging, as well as immunohistochemical and Western blot assessments, were performed 24 h after MCAO. Each ATV-treated group demonstrated significant reductions in infarct volume compared with that in the vehicle-treated group at 24 h after MCAO, which was associated with autophagy reduction and ER stress attenuation in neurons and neovascularization. Next, Western blotting was used to detect the levels of the autophagy-related proteins LC3B and P62 and of ER stress pathway proteins. However, 3MA significantly partially inhibited the ER stress pathway via limiting the autophagic flux in the AMCAO group. In conclusion, our results imply that the neuroprotective function of ATV depends on autophagic activity to diminish ER stress-related cell apoptosis in rats with PMCAO and suggest that compounds that inhibit autophagic activity might reduce the neuroprotective effect of ATV after brain ischemia.

16.
Neuroscience ; 354: 122-135, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28456716

RESUMO

Exercise has been proven to promote learning and memory, and is closely related to increased adult neurogenesis in the hippocampus. In our study, the ß subunit of Glycogen synthase kinase-3 (GSK3ß) can be significantly regulated by exercise, and the modulation of GSK3ß activity can enhance adult neurogenesis and memory. To explore the mechanism by which exercise can improve cognitive function and adult neurogenesis, and the role GSK3ß plays in this process, we established a mouse model of voluntary exercise to examine the expression and activity of GSK3ß, and its associated signaling pathways, in the hippocampus dentate gyrus. The results showed an obvious increase in adult neurogenesis and cognitive functions, and the up-regulation of GSK3ß, after exercise. The activity of the insulin pathway, which negatively regulates GSK3ß, was also increased. Moreover, our results showed that the dopamine D1 receptor (DARP D1) pathway and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were also activated, which indicates a relationship between GSK3ß and neurogenesis. Overall, our findings demonstrated that voluntary exercise promotes cognition and neurogenesis in the adult mouse dentate gyrus by the regulation of GSK3ß expression and activity, which may be implemented through the DARP D1 receptor-signaling pathway.


Assuntos
Regulação da Expressão Gênica/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/fisiologia , Neurogênese/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Proteína de Ligação a CREB/metabolismo , AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas do Domínio Duplacortina , Inibidores Enzimáticos/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Indóis/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Maleimidas/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Oncotarget ; 7(51): 84228-84238, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27705945

RESUMO

Human papillomavirus (HPV) infection is a definite risk factor for cervical cancer. Nevertheless, only some infected individuals actually develop cervical cancer. The cGAS-STING pathway in innate immunity plays an important role in protecting against HPV infection. Chen et al. described that the rs2516448 SNP in the MHC locus may affect susceptibility to cervical cancer, a finding that we attempted to replicate in a Chinese population. To investigate the effects of cGAS, STING and MHC polymorphisms on susceptibility to cervical precancerous lesions, 9 SNPs were analyzed in 164 cervical precancerous lesion cases and 428 controls. Gene-gene and gene-environment interactions were also evaluated. We found a significantly decreased risk of cervical precancerous lesions for the GG genotype of rs311678 in the cGAS gene (ORadjusted = 0.40, 95% CI: 0.16-0.98). Moreover, MDR analysis identified a significant three-locus interaction model, involving HPV infection, age at menarche and rs311678 in cGAS. Additionally, a significant antagonistic interaction between HPV infection and rs311678 was found on an additive scale. In conclusion, our results indicate that the rs311678 polymorphism in the cGAS gene confers genetic susceptibility to cervical precancerous lesions. Moreover, the three-way gene-environment interactions further demonstrate that the rs311678 polymorphism in cGAS can significantly decrease the risk of HPV infection and the elder at menarche.


Assuntos
Predisposição Genética para Doença/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Adulto , Povo Asiático/genética , China , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Genótipo , Haplótipos , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/etnologia , Infecções por Papillomavirus/virologia , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/etnologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/virologia , Fatores de Risco , Transdução de Sinais/genética , Neoplasias do Colo do Útero/etnologia , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA